# Group Analysis

File: GroupAna.pdf

Gang Chen

SSCC/NIMH/NIH/HHS







12/3/13

# FMRI Study Streamline



### **Preview**

- Introduction: basic concepts
  - Why do we need to do group analysis?
  - Factor, quantitative covariates, main effect, interaction, ...
- Various group analysis approaches
  - Regression (*t*-test): 3dttest++, 3dMEMA, 3dttest, 3RegAna
  - AN(C)OVA: 3dANOVAx, 3dMVM, GroupAna
  - Quantitative covariates: 3dttest++, 3dMEMA, 3dMVM, 3dLME
  - Complicated cases: 3dLME
- Miscellaneous
  - Issues regarding result reporting
  - Intra-Class Correlation (ICC)
  - Nonparametric approach and fixed-effects analysis

# Why Group Analysis?

- Evolution of FMRI studies
  - ▶ Early days: no need for group analysis▶ Seed-based correlation for one subject was revolutionary
  - Now: torture brain / data enough, and hope nature will confess!∠Many ways to manipulate the brain (and data)
- Reproducibility and generalization
  - Science strives for generality: summarizing subject results
  - Typically 10 or more subjects per group
  - Exceptions: pre-surgical planning, lie detection, ...
- Why not one analysis with a mega model for all subjects?
  - Computationally unmanageable
  - Heterogeneity in data or experiment design across subjects

### Toy example of group analysis

- Responses from a group of subjects under one condition
  - What we have:  $(\beta_1, \beta_2, ..., \beta_{10}) = (1.13, 0.87, ..., 0.72)$
- Centroid: average  $(\beta_1 + \beta_2 + ... + \beta_{10})/10 = 0.92$  is not enough
  - Variation/reliability measure: diversity, spread, deviation
- Model building
  - Subject i's response = group average + deviation of subject i: simple model GLM (one-sample t-test)

$$\hat{\beta}_i = b + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

- ho If individual responses are consistent,  $\epsilon_i$  should be small
- ₱ How small do we consider comfortable (p-value)?
  - $\circ$  *t*-test: significance measure =  $\frac{\hat{b}}{\hat{\sigma}/n}$
- 2 measures: *b* (dimensional) and *t* (dimensionless)

### **Group Analysis Modes**

- Conventional: voxel-wise (brain) or node-wise (surface)
  - Common effects are of interest
  - Cross-subjects variability should be properly accounted for
    - Appropriate model (program)
    - But variability is not typically discussed
  - With-subject correlation should also be accounted for
    - o Between- vs. within-subject (repeated-measures) factors
    - o Traditionally this is handled through ANOVA: syntactic sugar
    - ∘ GLM and LME
- Results: two components (on afni: OLay + Thr)
  - Feffect estimates: have unit and physical meaning
  - Their significance (response to house significantly > face)
    - Very unfortunately p-values solely focused in FMRI!!!

### **Group Analysis Modes**

- Conventional: voxel-wise (brain) or node-wise (surface)
  - Prerequisite: reasonable alignment to some template
  - Limitations: alignment could be suboptimal or even poor
    - o Different folding patterns across subjects: better alignment could help
    - Different cytoarchitectonic (or functional) locations across subjects: alignment won't help!
    - o Impact on conjunction vs. selectivity
- Alternatives (won't discuss)
  - ROI-based approach
    - Half data for functional localizers, and half for ROI analysis
    - Easier: whole brain reduced to one or a few numbers per subject
    - Model building and tuning possible

#### **Terminology**: Explanatory variables

- Response/Outcome variable: regression coeficients
- Factor: categorical, qualitative, nominal or discrete variable
  - Categorization of conditions/tasks
    - Within-subject (repeated-measures) factor
  - > Subject-grouping: Group of subjects (gender, normal/patients)
    - Between-subject factor
    - Gender, patients/controls, genotypes, ...
  - > Subject: random factor measuring deviations
    - Of no interest, but served as random samples from a population
- Quantitative (numeric or continuous) covariate
  - > Three usages of 'covariate'
    - Quantitative
    - Variable of no interest: qualitative (scanner, sex, handedness) or quantitative
    - Explanatory variable (regressor, independent variable, or predictor)
  - > Examples: age, IQ, reaction time, etc.

#### **Terminology**: Fixed effects

- Fixed factor: categorical (qualitative or discrete) variable
  - Freated as a fixed variable (constant to be estimated) in the model
    - Categorization of conditions/tasks (modality: visual/auditory)
      - o Within-subject (repeated-measures) factor: 3 emotions
    - > Subject-grouping: Group of subjects (gender, normal/patients)
      - o Between-subject factor
  - All levels of a factor are of interest
    - >main effect, contrasts among levels
  - Fixed in the sense of statistical inferences
    - > apply only to the specific levels of the factor
      - o Emotions: positive, negative, neutral
    - > Don't extend to other potential levels that might have been included
      - Inferences on positive and negative emotions can't be generated to neutral
- Fixed variable: quantitative covariate

#### **Terminology**: Random effects

- Random factor/effect
  - Random variable in the model: exclusively subject in FMRI
    - > average + effects uniquely attributable to each subject: e.g.  $N(\mu, \tau^2)$
    - > Requires enough number of subjects
  - Each individual subject effect is of NO interest
    - $\gt$  Group response = 0.92%, subject 1 = 1,13%, random effect = 0.21%
  - Random in the sense
    - > Subjects as random samples (representations) from a population
    - > Inferences can be generalized to a hypothetical population
- A generic model: decomposing each subject's response  $y_i = X_i \beta + Z_i b_i + \epsilon_i$ 
  - Fixed (population) effects: universal constants (immutable):  $\beta$
  - Random effects: individual subject's deviation from the population (personality: durable):  $b_i$
  - ho Residuals: noise (evanescent):  $\epsilon_i$

#### **Terminology**: Omnibus tests - main effect and interaction

- Main effect: any difference across levels of a factor?
- Interactions: with  $\geq 2$  factors, interaction may exist
  - P 2 × 2 design: F-test for interaction between A and B = t-test of

 $\circ$  *t* is better than *F*: a positive *t* shows

A1B1 - A1B2 > A2B1 - A2B2 and A1B1 - A2B1 > A1B2 - A2B2



#### **Terminology**: Interaction

- Interactions: ≥ 2 factors
  - May become very difficult to sort out!
    - $\circ \ge 3$  levels in a factor
    - $\circ \ge 3$  factors
  - Solutions: reduction
    - o Pairwise comparison
    - o Plotting: ROI (Figures don't lie, but liars do figure. Mark Twain)
  - Requires sophisticated modeling
    - o AN(C)OVA: 3dANOVAx, 3dMVM, 3dLME
- Interactions: quantitative covariates
  - P In addition to linear effects, may have nonlinearity:  $x_1 * x_2$ , or  $x^2$

#### **Terminology**: Interaction

• Interaction: between a factor and a quantitative covariate



- P Throw in an explanatory variable in a model as a nuisance regressor (additive effect) may not be enough
  - Model building/tuning: Potential interactions with other explanatory variables?
  - o Of scientific interest (e.g., gender difference)

### **Models at Group Level**

- Conventional approach: taking  $\beta$  (or linear combination of multiple  $\beta$ 's) only for group analysis
  - Assumption: all subjects have same precision (reliability, standard error, confidence interval) about  $\beta$
  - All subjects are treated equally
  - For Student *t*-test: paired, one- and two-sample: not random-effects models in strict sense as usually claimed
  - AN(C)OVA, GLM, MVM, LME
- Alternative: taking both effect estimates and *t*-statistics
  - t-statistic contains precision information about effect estimates
  - Each subject is weighted based on precision of effect estimate
- All models are some sorts of linear model
  - ₱ t-test, ANOVA, MVM, LME, MEMA
  - Partition each subject's effect into multiple components

### **One-Sample Case**

- One group of subjects  $(n \ge 10)$ 
  - P One condition (visual or auditory) effect
  - Linear combination of multiple effects (visual vs. auditory)
- Null hypothesis  $H_0$ : average effect = 0
  - Rejecting  $H_0$  is of interest!
- Results
  - Average effect at group level (OLay)
  - Significance: t-statistic (Thr Two-tailed by default)
- Approaches
  - uber\_ttest.py, 3dttest++ (3dttest), 3dMEMA

#### One-Sample Case: Example

• 3dttest++: taking  $\beta$  only for group analysis 3dttest++ -prefix VisGroup -mask mask+tlrc \ -setA 'FP+tlrc[Vrel#0 Coef]' 'FR+tlrc[Vrel#0 Coef]' . . . . . . 'GM+tlrc[Vrel#0 Coef]' • 3dMEMA: taking  $\beta$  and *t*-statistic for group analysis 3dMEMA -prefix VisGroupMEMA -mask mask+tlrc -setA Vis \ FP 'FP+tlrc[Vrel#0 Coef]' 'FP+tlrc[Vrel#0 Tstat]' FR 'FR+tlrc[Vrel#0 Coef]' 'FR+tlrc[Vrel#0 Tstat]' GM 'GM+tlrc[Vrel#0 Coef]' 'GM+tlrc[Vrel#0 Tstat]' -missing data 0

### **Two-Sample Case**

- Two groups of subjects ( $n \ge 10$ ): males and females
  - One condition (visual or auditory) effect
  - Linear combination of multiple effects (visual vs. auditory)
  - Example: Gender difference in emotion effect?
- Null hypothesis  $H_0$ : Group 1 = Group 2
  - Results
    - Group difference in average effect
    - Significance: t-statistic Two-tailed by default
- Approaches
  - P uber\_ttest.py, 3dttest++, 3dMEMA
  - P One-way between-subjects ANOVA
    - o 3dANOVA: can also obtain individual group test
    - o 3dANOVA3: group by condition interaction

#### Paired Case

- One groups of subjects  $(n \ge 10)$ 
  - 2 conditions (visual or auditory): no missing data allowed (3dLME)
  - Example: Visual vs. Auditory
- Null hypothesis  $H_0$ : Condition1 = Condition2
  - Results
    - Average difference at group level
    - Significance: t-statistic (two-tailed by default)
- Approaches
  - uber\_ttest.py, 3dttest++ (3dttest), 3dMEMA
  - P One-way within-subject (repeated-measures) ANOVA
    - o 3dANOVA2 –type 3: can also obtain individual condition test
  - Missing data (3dLME): only 10 among 20 subjects have both
- Essentially equivalent to one-sample case: use contrast as input

#### **Paired Case**: Example

• 3dttest++: comparing two conditions

```
3dttest++ -prefix Vis Aud
 -mask mask+tlrc -paired
 -setA 'FP+tlrc[Vrel#0 Coef]'
        'FR+tlrc[Vrel#0 Coef]'
        . . . . . .
        'GM+tlrc[Vrel#0 Coef]'
 -setB 'FP+tlrc[Arel#0 Coef]'
        'FR+tlrc[Arel#0 Coef]'
        'GM+tlrc[Arel#0 Coef]'
```

#### **Paired Case**: Example

- 3dMEMA: comparing two conditions
  - Contrast has to come from each subject

```
3dMEMA -prefix Vis_Aud_MEMA
-mask mask+tlrc -missing_data 0
-setA Vis-Aud

FP 'FP+tlrc[Vrel-Arel#0_Coef]' 'FP+tlrc[Vrel-Arel#0_Tstat]' \
FR 'FR+tlrc[Vrel-Arel#0_Coef]' 'FR+tlrc[Vrel-Arel#0_Tstat]' \
.....

GM 'GM+tlrc[Vrel-Arel#0_Coef]' 'GM+tlrc[Vrel-Arel#0_Tstat]'
```

### One-Way Between-Subjects ANOVA

- Two or more groups of subjects ( $n \ge 10$ )
  - P One condition or linear combination of multiple conditions
  - Example: visual, auditory, or visual vs. auditory
- Null hypothesis  $H_0$ : Group 1 = Group 2
  - Results
    - Average group difference
    - ∘ Significance: *t* and *F*-statistic (two-tailed by default)
- Approaches
  - ₽ 3dANOVA
  - > 2 groups: pair-group contrasts 3dttest++ (3dttest), 3dMEMA
  - P Dummy coding: 3dttest++, 3dMEMA
  - 3dMVM (not recommended)

### Multiple-Way Between-Subjects ANOVA

- Two or more subject-grouping factors: factorial
  - P One condition or linear combination of multiple conditions
  - Example: gender, control/patient, genotype, handedness, ...
- Testing main effects, interactions, single group, group comparisons
  - ₱ Significance: t- (two-tailed by default) and F-statistic
- Approaches
  - Factorial design (imbalance not allowed): two-way (3dANOVA2 type 1), three-way (3dANOVA3 –type 1)
  - ₱ 3dMVM: no limit on number of factors (imbalance allowed)
  - All factors have two levels: uber\_ttest.py, 3dttest++, 3dMEMA
  - Using group coding with 3dttest++, 3dMEMA: imbalance allowed

### One-Way Within-Subject ANOVA

- Also called one-way repeated-measures: one group of subject ( $n \ge 10$ )
  - Two or more conditions: extension to paired *t*-test
  - Example: happy, sad, neutral
- Main effect, simple effects, contrasts, general linear tests,
  - ₱ Significance: t- (two-tailed by default) and F-statistic
- Approaches
  - ₱ 3dANOVA2 -type 3 (two-way ANOVA with one random factor)
  - With two conditions, equivalent to paired case with 3dttest++ (3dttest), 3dMEMA
  - With more than two conditions, can break into pairwise comparisons with 3dttest++, 3dMEMA

### One-Way Within-Subject ANOVA

Example: visual vs. auditory condition

```
3dANOVA2 -type 3 -alevels 2 -blevels 10
 -prefix Vis Aud -mask mask+tlrc
  -dset 1 1 'FP+tlrc[Vrel#0 Coef]'
  -dset 1 2 'FR+tlrc[Vrel#0 Coef]'
        . . . . . .
  -dset 1 10 'GM+tlrc[Vrel#0 Coef]'
  -dset 2 1 'FP+tlrc[Arel#0 Coef]'
  -dset 2 2 'FR+tlrc[Arel#0 Coef]'
  -dset 2 10 'GM+tlrc[Arel#0 Coef]'
```

### Two-Way Within-Subject ANOVA

- Factorial design; also known as two-way repeated-measures
  - 2 within-subject factors
  - Example: emotion and category (visual/auditory)
- Testing main effects, interactions, simple effects, contrasts
- Approaches
  - 3dANOVA3 –type 4 (three-way ANOVA with one random factor)
  - All factors have 2 levels (2x2): uber\_ttest.py, 3dttest++, 3dMEMA
  - Missing data?
    - o Break into t-tests: uber\_ttest.py, 3dttest++ (3dttest), 3dMEMA

# **Two-Way Mixed ANOVA**

- Factorial design
  - One between-subjects and one within-subject factor
  - Example: gender (male and female) and emotion (happy, sad, neutral)
- Testing main effects, interactions, simple effects, contrasts
  - ₱ Significance: t- (two-tailed by default) and F-statistic
- Approaches
  - 3dANOVA3 –type 5 (three-way ANOVA with one random factor)

  - Missing data?
    - o Unequal number of subjects across groups: 3dMVM, GroupAna
    - Break into t-tests: uber\_ttest.py, 3dttest++ (3dttest), 3dMEMA
    - o 3dLME

### Group analysis with multiple basis functions

- Basis functions: TENTzero, TENT, CSPLINzero, CSPLIN
  - Area under the curve (AUC) approach
    - Forget about the subtle shape difference
    - Focus on the response magnitude measured by AUC
    - Potential issues: Shape information lost; Undershoot may cause trouble
  - Maintaining shape information
    - $\circ$  Taking individual  $\beta$  values to group analysis
- Basis functions of SPMG2/3
  - Only take the major component to group level
  - Reconstruct the HRF, and take the effect estimates at the time grids to group analysis

# Group analysis with multiple basis functions

- Analysis with effect estimates at consecutive time grids
  - Used to be considered very difficult
  - Figure Extra variable, Time =  $t_0$ ,  $t_1$ , ...,  $t_k$
  - P One group of subjects under one condition
    - $\circ$  Null hypothesis  $H_0$ :  $\beta_1$ =0,  $\beta_2$ =0, ...,  $\beta_k$ =0 (NOT  $\beta_1$ = $\beta_2$ =...= $\beta_k$ )
    - Use 3dLME or 3dMVM
    - $\circ$  Result: *F*-statistic for  $H_0$  and *t*-statistic for each time grid
  - Multiple groups under one condition
    - Use 3dANOVA3 –type 5 (two-way mixed ANOVA) or 3dMVM
    - o Focus: do these groups have different response shape?
      - Null hypothesis  $H_0$ :  $\beta_1^{(1)} = \beta_1^{(2)}, \beta_2^{(1)} = \beta_2^{(2)}, ..., \beta_k^{(1)} = \beta_k^{(2)}$
      - *F*-statistic for the interaction between Time and Group
      - *F*-statistic for Group: AUC; *F*-statistic for Time: ?
    - o Subtle shape differences: *t*-statistic for each time grid of each group

### Group analysis with multiple basis functions

- Analysis with effect estimates at consecutive time grids
  - One groups under multiple conditions
    - Use 3dANOVA3 –type 4 or 3dMVM
    - o Focus: do these conditions have different response shape?
      - Null hypothesis  $H_0$ :  $\beta_1^{(1)} = \beta_1^{(2)}, \beta_2^{(1)} = \beta_2^{(2)}, ..., \beta_k^{(1)} = \beta_k^{(2)}$
      - *F*-statistic for the interaction between Time and Condition
      - *F*-statistic for Condition: AUC; *F*-statistic for Time: ?
    - Subtle shape differences: t for each time grid of the condition
  - Complicated scenarios: 3dMVM
    - Unequal number of subjects across groups
    - Comparing shape across groups and conditions simultaneously
    - o More factors or between-subjects quantitative variables: age, IQ

### **More sophisticated cases?**

- 3dMVM
  - No bound on the number of explanatory variables
  - P Three tests: UVT-UC, UVT-SC, MVT
  - Between-subjects covariates allowed
- If all factors have two levels, run 3dttest++, 3dMEMA
- Try to break into multiple *t*-tests: uber\_ttest.py, 3dttest++, 3dMEMA
- 3dLME
  - Within-subject covariates allowed
  - Missing data of a within-subject factor
  - Subjects are family members or even twins

# **Correlation analysis**

Correlation between brain response and behavioral measures

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_i + \epsilon_i$$

- P Difference between correlation and regression?
  - Essentially the same
  - When explanatory and response variable are standardized,
     the regression coefficient = correlation coefficient
- Two approaches
  - Standardization
  - Convert *t*-statistic to *r* (or determination coefficient)

$$R^2 = t^2/(t^2 + DF)$$

o Programs: 3dttest++, 3dMEMA, 3dMVM, 3dRegAna

# Trend analysis

- Correlation between brain response and some gradation
  - Linear, quadratic, or higher-order effects
    - Between-subjects: Age, IQ
      - Fixed effect
    - Within-subject measures: morphed images
      - Random effects involved: 3dLME
  - Modeling: weights based on gradation
    - Equally-spaced: coefficients from orthogonal polynomials
    - o With 6 equally-spaced levels, e.g., 0, 20, 40, 60, 80, 100%,
      - Linear: -5 -3 -1 1 3 5
      - Quadratic: 5 -1 -4 -4 -1 5
      - Cubic: -5 7 4 -4 -7 5

### Trend analysis

- Correlation between brain response and some gradation
  - Modeling: weights based on gradation
    - o Not equally-spaced: constructed from, e.g., poly() in R
    - Ages of 15 subjects: 31.7 38.4 51.1 72.2 27.7 71.6 74.5 56.6
      54.6 18.9 28.0 26.1 58.3 39.2 63.5



# Trend analysis

- Correlation between brain response and some gradation
  - Modeling with within-subject trend
    - Run GLT with appropriate weights
  - Modeling with within-subject trend: 3 approaches
    - Set up GLT among the factor levels at group level using the weights
      - 3dANOVA2/3, 3dMVM
    - Set up the weights as the values of a variable
      - Needs to account for deviation of each subject
      - -3dLME
    - Run trend analysis at individual level (i.e., -gltsym), and then take the trend effect estimates to group level
      - Simpler than the other two approaches

### Group analysis with quantitative variables

- Covariate: 3 usages
  - Quantitative (vs. categorical) variable
    - o Age, IQ, behavioral measures, ...
  - Of no interest to the investigator
    - Age, IQ, sex, handedness, scanner,...
  - Any explanatory variables in a model
- Variable selection
  - Infinite candidates: relying on prior information
  - P Typical choices: age, IQ, RT, ...
  - RT: individual vs. group level
    - o Amplitude modulation: cross-trial variability at individual level
    - o Group level: variability across subjects

### Group analysis with quantitative variables

- Conventional framework
  - ANCOVA: one between-subjects factor (e.g., sex) + one quantitative variable (e.g., age)
    - Extension to ANOVA: GLM
    - Homogeneity of slopes
- Broader framework
  - Any modeling approaches involving quantitative variables
    - o Regression, GLM, MVM, LME
    - Trend analysis, correlation analysis

### Quantitative variables: subtleties

• Regression: one group of subjects + quantitative variables

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \epsilon_i$$

- Interpretation of effects
  - $\circ \alpha_1$  slope (change rate, marginal effect): effect per unit of x
  - $\circ \alpha_0$  intercept: group effect while x=0
    - Not necessarily meaningful
    - Linearity may not hold
    - Solution: centering crucial

for interpretability

• Mean centering?



#### Quantitative variables: subtleties

Trickier scenarios with two or more groups

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$

- Interpretation of effects
  - Slope: Interaction! Same or different slope?
  - $\circ \alpha_0$  same or different center?



### Quantitative variables: subtleties

Trickiest scenario with two or more groups

$$\hat{\beta}_i = \alpha_0 + \alpha_1 * x_{1i} + \alpha_2 * x_{2i} + \alpha_3 * x_{3i} + \epsilon_{ij}$$



# Why should we report response magnitudes?

- Unacceptable in some fields if only significance is reported
- Too much obsession or worship in FMRI about *p*-value!
  - Colored blobs of t-values
  - Peak voxel selected based on peak *t*-value
- Science is about reproducibility
  - Response amplitude should be of primacy focus
  - Statistics are only for thresholding
    - No physical dimension
    - o Once surviving threshold, specific values are not informative
  - Should science be based on a dichotomous inference?
    - o If a cluster fails to survive for thresholding, there is no value?
    - SVC: Band-Aid solution
    - o More honest approach: response amplitudes

#### Basics: Null hypothesis significance testing (NHST)

- Null and alternative hypotheses  $\nu H_0$ : nothing happened vs.  $H_1$ : something happened
- Dichotomous or binary decision



# **How rigorous about corrections?**

- Two types of correction
  - Multiple testing correction n(MTC): same test across brain
     ∠FWE, FDR, SVC(?)
     ∠People (esp. reviewers) worship this!
  - Multiple comparisons correction (MCC): different tests
    - ∠ Happy vs. Sad, Happy vs. Neutral, Sad vs. Neutral
    - $\angle$  Two one-sided *t*-tests: p-value is  $\frac{1}{2}$  of two-sided test!
    - ∠ How far do you want to go?
      - o Tests in one study
      - o Tests in all FMRI or all scientific studies?
    - ∠ Nobody cares the issue in FMRI
- Many reasons for correction failure
  - Region size, number of subjects, alignment quality, substantial cross-subject variability (anxiety disorder, depression, ...)

# Presenting response magnitudes



# Presenting response magnitudes

(A) Coronal view of interaction effect of Group:Condition:Time



(B) Sphericity scenarios at six representative voxels

| Voxel |             | Sphericity           |                 |                 | UVT-UC               | UVT-SC               | MVT-WS               | HT     |
|-------|-------------|----------------------|-----------------|-----------------|----------------------|----------------------|----------------------|--------|
| No.   | coordinates | Mauchly p-value      | $\epsilon_{GG}$ | $\epsilon_{HF}$ | p-value              | p-value              | p-value              | taking |
| 1     | -2 36 27    | 0                    | 0.32            | 0.35            | 0.28                 | 0.31                 | 0.00021              | MVT-WS |
| 2     | -33 -5 42   | 0                    | 0.42            | 0.46            | $3.8 \times 10^{-6}$ | $8.4 \times 10^{-4}$ | $1.6 \times 10^{-4}$ | MVT-WS |
| 3     | -50 -16 24  | 0                    | 0.45            | 0.50            | $1.6 \times 10^{-4}$ | 0.0041               | 0.14                 | MVT-WS |
| 4     | -5 -20 23   | $8.7 \times 10^{-6}$ | 0.68            | 0.79            | $1.8 \times 10^{-5}$ | 0.0001               | 0.008                | UVT-SC |
| 5     | 37 68 20    | 0                    | 0.30            | 0.32            | 0.012                | 0.074                | 0.15                 | MVT-WS |
| 6     | -36 -16 7   | 0                    | 0.53            | 0.60            | $1.8 \times 10^{-5}$ | $5.3 \times 10^{-4}$ | 0.0019               | UVT-SC |

# Presenting response magnitudes



### **IntraClass Correlation (ICC)**

- Reliability (consistency, reproducibility) of signal: extent to which the levels of a factor are related to each other
  - ₱ Example 3 sources of variability: conditions, sites, subjects
  - Traditional approach: random-effects ANOVAs
  - LME approach

$$\hat{\beta}_{ijk} = \alpha_0 + \alpha_1 * x_k + b_i + c_j + d_k + \epsilon_{ijk}, b_i \sim N(0, \tau_1^2), c_j \sim N(0, \tau_2^2), d_k \sim N(0, \tau_3^2), \epsilon_{ijk} \sim N(0, \sigma^2)$$

$$ICC_l = \frac{\tau_l^2}{\tau_l^2 + \tau_2^2 + \tau_3^2 + \sigma^2}, l = 1, 2, 3$$

₱ 3dICC\_REML, 3dLME

# **Group Analysis:** Non-Parametric Approach

- Parametric approach
  - P Enough number of subjects n > 10
  - Random effects of subjects: usually Gaussian distribution
  - Individual and group analyses: separate
- Non-parametric approach
  - Moderate number of subjects: 4 < n < 10
  - No assumption of data distribution (e.g., normality)
  - Statistics based on ranking or permutation
  - Individual and group analyses: separate

#### **Group Analysis:** Fixed-Effects Analysis

- When to consider?
  - LME approach
  - P Group level: a few subjects: n < 6
  - Individual level: combining multiple runs/sessions
- Case study: difficult to generalize to whole population
- Model  $\beta_i = b + \varepsilon_i$ ,  $\varepsilon_i \sim N(0, \sigma_i^2)$ ,  $\sigma_i^2$ : within-subject variability
  - Fixed in the sense that cross-subject variability is not considered
- Direct fixed-effects analysis (3dDeconvolve/3dREMLfit)
  - P Combine data from all subjects and then run regression
- Fixed-effects meta-analysis (**3dcalc**): weighted least squares
  - $\beta = \sum w_i \beta_i / \sum w_i$ ,  $w_i = t_i / \beta_i = \text{weight for } i \text{th subject}$

$$P t = \beta \sqrt{\sum w_i}$$

# **Non-Parametric Analysis**

- Ranking-based: roughly equivalent to permutation tests
  - 3dWilcoxon (~ paired t-test)
  - 3dFriedman (~ one-way within-subject with 3dANOVA2)
  - 3dMannWhitney (~ two-sample *t*-test)
  - 3dKruskalWallis (~ between-subjects with 3dANOVA)
- Pros: Less sensitive to outliers (more robust)
- Cons
  - > Multiple testing correction **limited** to FDR (**3dFDR**)
  - Less flexible than parametric tests
    - Can't handle complicated designs with more > 1 fixed-effects factor
    - Can't handle covariates
- Permutation approach?

# **Group Analysis Program List**

- 3dttest++ (one-sample, two-sample and paired t) + covariates (voxel-wise)
- 3dMEMA (R package for mixed-effects analysis, t-tests plus covariates)
- 3ddot (correlation between two sets)
- 3dANOVA (one-way between-subject)
- 3dANOVA2 (one-way within-subject, 2-way between-subjects)
- 3dANOVA3 (2-way within-subject and mixed, 3-way between-subjects)
- 3dMVM (AN(C)OVA, and within-subject MAN(C)OVA)
- **3dLME** (R package for sophisticated cases)
- 3dttest (mostly obsolete: one-sample, two-sample and paired t)
- 3dRegAna (obsolete: regression/correlation, covariates)
- GroupAna (mostly obsolete: Matlab package for up to four-way ANOVA)

# FMRI Group Analysis Comparison

|                            |                                      | AFNI                           | SPM                                                           | FSL                                                       |  |
|----------------------------|--------------------------------------|--------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|--|
| t-test (one-, two          | o-sample, paired)                    | 3dttest++,<br>3dMEMA           | Yes                                                           | FLAME1,<br>FLAME1+2                                       |  |
| One categorica one-way ANO |                                      | 3dANOVA/2/3,<br>GroupAna       | Only <b>one</b> WS factor: full and flexible factorial design | Only <b>one</b> within-<br>subject factor: GLM<br>in FEAT |  |
| Multi-way AN(              | (C)OVA                               | 3dANOVA2/3,<br>GroupAna, 3dMVM |                                                               |                                                           |  |
| Between-subject            | ct covariate                         | 3dttest++,<br>3dMEMA, 3dMVM    | Partially                                                     | Partially                                                 |  |
|                            | Covariate + within-subject factor    |                                |                                                               |                                                           |  |
| Sophisticated situations   | Subject adjustment in trend analysis | 3dLME                          |                                                               |                                                           |  |
|                            | Basis functions                      |                                |                                                               |                                                           |  |
|                            | Missing data                         |                                |                                                               |                                                           |  |

### **Preview**

- Basic concepts
  - Why do we need to do group analysis?
  - Factor, quantitative covariates, main effect, interaction, ...
- Various group analysis approaches
  - Regression (*t*-test): 3dttest++, 3dMEMA, 3dttest, 3RegAna
  - AN(C)OVA: 3dANOVAx, 3dMVM, GroupAna
  - Quantitative covariates: 3dttest++, 3dMEMA, 3dMVM, 3dLME
  - Complicated cases: 3dLME
- Miscellaneous
  - Issues regarding result reporting
  - Intra-Class Correlation (ICC)
  - Nonparametric approach and fixed-effects analysis
- No routine statistical questions, only questionable routines!